extension | φ:Q→Aut N | d | ρ | Label | ID |
C23.1SD16 = C23.SD16 | φ: SD16/C2 → D4 ⊆ Aut C23 | 16 | 8+ | C2^3.1SD16 | 128,73 |
C23.2SD16 = C23.2SD16 | φ: SD16/C2 → D4 ⊆ Aut C23 | 32 | 8- | C2^3.2SD16 | 128,74 |
C23.3SD16 = C24.D4 | φ: SD16/C2 → D4 ⊆ Aut C23 | 16 | | C2^3.3SD16 | 128,75 |
C23.4SD16 = C23.4D8 | φ: SD16/C2 → D4 ⊆ Aut C23 | 32 | | C2^3.4SD16 | 128,76 |
C23.5SD16 = C23.Q16 | φ: SD16/C2 → D4 ⊆ Aut C23 | 32 | | C2^3.5SD16 | 128,83 |
C23.6SD16 = C24.4D4 | φ: SD16/C2 → D4 ⊆ Aut C23 | 32 | | C2^3.6SD16 | 128,84 |
C23.7SD16 = C24.14D4 | φ: SD16/C2 → D4 ⊆ Aut C23 | 32 | | C2^3.7SD16 | 128,340 |
C23.8SD16 = C24.16D4 | φ: SD16/C2 → D4 ⊆ Aut C23 | 32 | | C2^3.8SD16 | 128,345 |
C23.9SD16 = M5(2).C22 | φ: SD16/C2 → D4 ⊆ Aut C23 | 16 | 8+ | C2^3.9SD16 | 128,970 |
C23.10SD16 = C23.10SD16 | φ: SD16/C2 → D4 ⊆ Aut C23 | 32 | 8- | C2^3.10SD16 | 128,971 |
C23.11SD16 = C23.8D8 | φ: SD16/C4 → C22 ⊆ Aut C23 | 32 | | C2^3.11SD16 | 128,21 |
C23.12SD16 = C23.12SD16 | φ: SD16/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.12SD16 | 128,81 |
C23.13SD16 = C23.13SD16 | φ: SD16/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.13SD16 | 128,82 |
C23.14SD16 = C8.4C42 | φ: SD16/C4 → C22 ⊆ Aut C23 | 32 | 4 | C2^3.14SD16 | 128,121 |
C23.15SD16 = C24.60D4 | φ: SD16/C4 → C22 ⊆ Aut C23 | 32 | | C2^3.15SD16 | 128,251 |
C23.16SD16 = C24.61D4 | φ: SD16/C4 → C22 ⊆ Aut C23 | 32 | | C2^3.16SD16 | 128,252 |
C23.17SD16 = C24.84D4 | φ: SD16/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.17SD16 | 128,766 |
C23.18SD16 = C24.85D4 | φ: SD16/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.18SD16 | 128,767 |
C23.19SD16 = C24.89D4 | φ: SD16/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.19SD16 | 128,809 |
C23.20SD16 = C23.20SD16 | φ: SD16/C4 → C22 ⊆ Aut C23 | 32 | 4 | C2^3.20SD16 | 128,875 |
C23.21SD16 = C23.21SD16 | φ: SD16/C4 → C22 ⊆ Aut C23 | 32 | 4 | C2^3.21SD16 | 128,880 |
C23.22SD16 = M5(2)⋊3C4 | φ: SD16/C4 → C22 ⊆ Aut C23 | 32 | 4 | C2^3.22SD16 | 128,887 |
C23.23SD16 = C8.9C42 | φ: SD16/C8 → C2 ⊆ Aut C23 | 64 | | C2^3.23SD16 | 128,114 |
C23.24SD16 = C24.133D4 | φ: SD16/C8 → C2 ⊆ Aut C23 | 64 | | C2^3.24SD16 | 128,539 |
C23.25SD16 = C24.135D4 | φ: SD16/C8 → C2 ⊆ Aut C23 | 64 | | C2^3.25SD16 | 128,624 |
C23.26SD16 = C23.23D8 | φ: SD16/C8 → C2 ⊆ Aut C23 | 64 | | C2^3.26SD16 | 128,625 |
C23.27SD16 = C2×D8.C4 | φ: SD16/C8 → C2 ⊆ Aut C23 | 64 | | C2^3.27SD16 | 128,874 |
C23.28SD16 = C23.30D8 | φ: SD16/D4 → C2 ⊆ Aut C23 | 32 | | C2^3.28SD16 | 128,26 |
C23.29SD16 = C8.11C42 | φ: SD16/D4 → C2 ⊆ Aut C23 | 32 | | C2^3.29SD16 | 128,115 |
C23.30SD16 = C8.2C42 | φ: SD16/D4 → C2 ⊆ Aut C23 | 64 | | C2^3.30SD16 | 128,119 |
C23.31SD16 = C2×C23.31D4 | φ: SD16/D4 → C2 ⊆ Aut C23 | 32 | | C2^3.31SD16 | 128,231 |
C23.32SD16 = C23.35D8 | φ: SD16/D4 → C2 ⊆ Aut C23 | 32 | | C2^3.32SD16 | 128,518 |
C23.33SD16 = C23.36D8 | φ: SD16/D4 → C2 ⊆ Aut C23 | 64 | | C2^3.33SD16 | 128,555 |
C23.34SD16 = C24.159D4 | φ: SD16/D4 → C2 ⊆ Aut C23 | 64 | | C2^3.34SD16 | 128,585 |
C23.35SD16 = C24.160D4 | φ: SD16/D4 → C2 ⊆ Aut C23 | 64 | | C2^3.35SD16 | 128,604 |
C23.36SD16 = C2×M5(2)⋊C2 | φ: SD16/D4 → C2 ⊆ Aut C23 | 32 | | C2^3.36SD16 | 128,878 |
C23.37SD16 = C2×C8.17D4 | φ: SD16/D4 → C2 ⊆ Aut C23 | 64 | | C2^3.37SD16 | 128,879 |
C23.38SD16 = C2×C8.Q8 | φ: SD16/D4 → C2 ⊆ Aut C23 | 32 | | C2^3.38SD16 | 128,886 |
C23.39SD16 = C2×C23.47D4 | φ: SD16/D4 → C2 ⊆ Aut C23 | 64 | | C2^3.39SD16 | 128,1818 |
C23.40SD16 = C2×C22.SD16 | φ: SD16/Q8 → C2 ⊆ Aut C23 | 32 | | C2^3.40SD16 | 128,230 |
C23.41SD16 = C24.155D4 | φ: SD16/Q8 → C2 ⊆ Aut C23 | 64 | | C2^3.41SD16 | 128,519 |
C23.42SD16 = C24.157D4 | φ: SD16/Q8 → C2 ⊆ Aut C23 | 64 | | C2^3.42SD16 | 128,556 |
C23.43SD16 = C23.38D8 | φ: SD16/Q8 → C2 ⊆ Aut C23 | 64 | | C2^3.43SD16 | 128,606 |
C23.44SD16 = C2×C23.46D4 | φ: SD16/Q8 → C2 ⊆ Aut C23 | 64 | | C2^3.44SD16 | 128,1821 |
C23.45SD16 = C2×C22.4Q16 | central extension (φ=1) | 128 | | C2^3.45SD16 | 128,466 |
C23.46SD16 = C22×D4⋊C4 | central extension (φ=1) | 64 | | C2^3.46SD16 | 128,1622 |
C23.47SD16 = C22×Q8⋊C4 | central extension (φ=1) | 128 | | C2^3.47SD16 | 128,1623 |
C23.48SD16 = C22×C4.Q8 | central extension (φ=1) | 128 | | C2^3.48SD16 | 128,1639 |